In-Line Compositional and Thickness Metrology Using XPS for Ultra-Thin Dielectric Films
نویسندگان
چکیده
65 nm and 45 nm silicon devices will utilize compositionally critical processes for gate dielectrics, capacitor dielectrics, gate and capacitor electrodes, and ultra shallow junction layers. For example, small changes in nitrogen composition have been correlated with unacceptable shifts in electrical properties of devices with SiOxNy gate dielectrics. Present optically-based metrology technologies for such applications are reaching limits for precise thickness measurements and do not provide direct and adequately precise compositional information. As a result, mature analytical techniques, such as x-ray photoelectron spectroscopy (XPS), are now being transitioned to inline production metrology usage. We discuss the application of XPS optimized for 200/300 mm production to compositional and thickness metrology of SiOxNy and high k gate dielectrics, high k capacitor dielectrics, and new electrode materials. The development of optimized hardware, robust data analysis algorithms and high throughput, fully automated operation has led to production implementation of XPS in advanced logic applications. The precise correlation of plasma nitridation metrology data with electrical device parameters has proven valuable in detecting process drifts early in the process flow, without the need to prepare devices through the first metal layer for testing. High density maps of film thickness and composition have enabled optimization of oxidation, nitridation and post-nitridation anneal processes for SiOxNy film production for 90 nm, 65 nm and below. High precision compositional and thickness metrology data for high-k gate and capacitor dielectrics is also presented
منابع مشابه
Titanium monoxide ultra-thin coatings evaporated onto polycrystalline copper films
We evaporated polycrystalline copper thin films of thickness between 10 and 100nm on silicon substrates with their native oxide under ultra-high-vacuum conditions. Some of them were exposed to air for a period ranging from 1 day to 2 weeks. X-ray photoelectron spectroscopy (XPS) revealed a clean copper surface with a trace of oxygen. These films that were exposed to air presented oxides in the ...
متن کاملOptical properties of silicon nano layers by using Kramers- Kronig method
Silicon thin layers are deposited on glass substrates with the thickness of 103 nm, 147 nm and 197 nm. The layers are produced with electron gun evaporation method under ultra-high vacuum condition. The optical Reectance and the Transmittance of produced layers were measured by using spectrophotometer. The optical functions such as, real and imaginary part of refractive index, real and imaginar...
متن کاملMultilayer thin films with compositional PbZr0.52Ti0.48O3/Bi1.5Zn1.0Nb1.5O7 layers for tunable applications
The dielectric properties and tunability of multilayer thin films with compositional PbZr0.52Ti0.48O3/Bi1.5Zn1.0Nb1.5O7 (PZT/BZN) layers (PPBLs) fabricated by pulsed laser deposition on Pt/TiO2/SiO2/Si substrate have been investigated. Dielectric measurements indicate that the PZT/BZN bilayer thin films exhibit medium dielectric constant of about 490, low loss tangent of 0.017, and superior tun...
متن کاملInfluence of Thickness and Number of Silver Layers in the Electrical and Optical Properties of ZnO/Ag/ZnO/Ag/ZnO ultra-Thin Films Deposited on the Glass for Low-Emissivity Applications
We report on transparent ZnO/Ag/ZnO and ZnO/Ag/ZnO/Ag/ZnO thin-films were deposited on the glass substrate by RF and DC sputtering for ZnO and Ag targets, respectively. The electrical and optical properties of the single and double Low Emissivity coatings were investigated with respect to the deposition time of Ag mid layer. The visible transmittance remains about 65% for single and 45% for...
متن کاملDetermination of the composition of Ultra-thin Ni-Si films on Si: constrained modeling of electron probe microanalysis and x-ray reflectivity data
The homogeneous bulk assumption used in traditional electron probe microanalysis (EPMA) can be applied for thin-layered systems with individual layers as thick as 50 nm provided the penetration depth of the lowest accelerating voltage exceeds the total film thickness. Analysis of an NIST Ni-Cr thin film standard on Si using the homogeneous model yielded certified compositions and application of...
متن کامل